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VISCOELASTICITY OF POLYMERS

Maurice Zaslawsky
Lawrence Radiation Laboratory, University of California

Livermore, California

February 26, 1963

ABSTRACT

A review of the state of the art of viscoelasticity from the applied me-
chanics standpoint is presented. Both linear and nonlinear viscoelasticity is
discussed with reference to both the theoretical and experimental aspects.

A simple design problem is used as an example and extensions of the problem
are discussed. The experimental approach of the Combined Stress Viscoelas-

tic Project at Lawrence Radiation Laboratory is presented.
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VISCOELASTICITY OF POLYMERS

Maurice Zaslawsky
Lawrence Radiation Laboratory, University of California

Livermore, California

February 26, 1963

INTRODUCTION

This paper discusses the phenomenological, mathematical, and experi-
mental aspects of viscoelasticity and relates them to the experimental work
being done at Lawrence Radiation Laboratory (LRLJ). The portion dealing
with phenomenological aspects describes the relationship between molecular
structure of a polymer and its associated mechanical properties. The rela-
tionships between time, temperature, stress; and strain are discussed. In-
cluded is a discussion on the ability to compress the time scale by increasing
the test temperature (time-temperature shift). The theory of mechanical
equivalence is discussed. This theory states that materials which have cer-
tain identical physical properties are expected to have identical mechanical
properties. The Boltzmann superposition principle is described along with a
comparison of the strain-hardening and time-hardening theories.

The mathematical section gives an example of a viscoelastic stress anal-
ysis for a relatively simple problem by means of mechanical models and by
so-called "empirical" means. The methods for handling nonlinear problems,
variations in temperature, and a generalized state of stress are discussed.
The conversion of a viscoelastic stress analysis into an elastic stress analy-

sis by the use of the Laplace transform is described.
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The section on experimental aspects explains the relationship between
creep, stress relaxation, constant crosshead velocity, sinusoidal, and bire-
fringence tests.

The objective of the LRL experimental research effort is primarily to
determine the applicability of the existing equations and develop more ade-
quate equations where needed for the stress-strain relationship of linear and
nonlinear viscoelasticity as a function of stress state, temperature; and hu-
midity.

A secondary object is to determine whether the arbitrary criterion of

failure (by excessive flow) as used on metals at high temperature is applicable

to viscoelasticity.

Two other papers are scheduled to follow this one. The first will discuss
the experimental apparatus in detail, and the second will compare the experi-

mental results with existing theory, and possibly propose new theory.

THE PHENOMENOLOGICAL ASPECTS
The object of this section is to classify viscoelasticity as a phenomenon

and indicate the conditions under which it occurs.

The Structure of Polymers

The structure of organic materials is complex; it does not exhibit grains
nor does it appear to operate under the same kind of mechanisms as one finds
in metals. In general, polymers can be classified as crystalline, amorphous,
or combinations of the two. Crystalline polymers are polymers whose mole-
cules are arranged in a definite geometric array. Amorphous polymers are
ones whose molecular chains intertwine with one another and represent no
pattern at all. X-ray and Geiger counter techniques are used to distinguish
between amorphous and crystalline constituents in a polymer. Dislocations,

which account for flow in metals at moderate stresses, have been observed
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in polymers that are 90% or more crystalline (1}. ! In less crystalline

The numbers in parentheses refer to the list of references at the end

of this paper.

polymers, dislocations have not been observed. It can be readily noted that

in such semicrystalline polymers, the relationships between the state of stress
and strain under various temperature and humidity conditions are more com-
plex and therefore more difficult to describe than in the wholly amorphous or
wholly crystalline polymers. The mechanical properties of such semicrystal-
line polymers are more dependent on the amorphous constituent than on the

crystalline constituent (2).

Linear Viscoelasticity

While it is indeed true that we live in a nonlinear world, little progress
has been made as yet in solving nonlinear problems. Linear approximations
to them are often attempted. Linear viscoelasticity results in differential
equations in which the function and its derivatives appear only in the first de-

gree; i.e.;

2

w o u du du .
A + B ay+C8y2+D=—8-§+ED5§+Fu—G(X9Y)e (1)

BXZ

82u 82
ox

Nonlinear theory results in equations like

2
—8—-E+ 21:L=§E=3xy9 (2)

axz oy

where u _g% is the nonlinear term {3). Such equations are difficult or impos-
sible to solve exactly. Therefore, much concentrated effort must be made in

the nonlinear theory with the object of obtaining a general solution which will

incorporate linear effects.
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The following questions arise: 1. How do you know when a material
behaves linearly? 2. How do you define the mathematical relationship be.;-
tween stress, strain, and time? Consideration of the second question will be
deferred until later.

Viscoelasticity is concerned with the time dependence of a material. If
one were to run creep tests, for example, the load or stress would be inde-
pendent of time but the deformation would be a function of time. This can be
seen in Fig. 1; el(t) is the resultant defbrmation of 7. Doubling 0, would re_-
sult in a deformation of Zel(t), if the material behaved linearly. If the funcu—
tion were other than Zel(t), then the material would be nonlinear and nonlinear
differential equations would be required to describe such behavior. The con-
ditions under which linear theory is realistic are extremely limited. Linear”-
ity limits are given in Table 1.4 of ref. (4), for several plastics and rubbers.
Experiments by Leaderman, Marin and others, on which Table 1.4 of ref.

(4) is based, indicate that the assumption of linearity is valid up to several
percent strain. Tobolsky (1) and Staverman and Schwarzl (5) have indicated
that linear theory (especially when extended to include temperature) is gener-
ally not applicable to semiqrystalline polymers. However, if the magnitude
of strain in semicrystalline polymers is considerably reduced as compared
with amorphous polymers, then linear theory may be applicable. Hence the
linearity limit goes from (for example) 3% to 0.3%. In the recent rheology
conference at Johns Hopkins (6) several papers were presented wherein linear
theory was applied to semicrystalline polymers, because for many engineer-

ing applications the interest is in small deformations.

Relationship Between Viscoelastic Behavior and Molecular Structure

At the present time, little has been determined as to the relationship

between the mechanical behavior of polymers and their structure. The polymer
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chains coil, uncoil, slip past one another. To understand the total effect or
spectrum of such interactions for a linear material becomes mathematically
very difficult. It is felt that the heart of the solution to polymer physics lies
in thermodynamics; however, the subject of thermodynamics is itself very
complex and thermodynamic experiments on polymers are extremely difficult.
Therefore, other experimental tec‘hniques have been used to extend the area
of knowledge. Tobolsky, in his recent book (1}, summarizes what he has done
in relating experimental viscoelasticity to molecular structure. Tobolsky has
stated two theories regarding the mechanical properties of polymers and
molecular structure: (a) Two amorphous polymers are mechanically equiva-
lent if their glass transition temperatures, melting temperatures, and chain
lengths are equivalent. (b) Two crystalline polymers are mechanically equi-
valent if they have equivalent glass temperature, melting temperature, chain
length, percent crystallinity, and crystalline texture.

In an effort to understand the molecular structure of polymers better,
attempts have been made to study the polymers in their fluid or viscous re-
gions. In this way, the motion of molecules can be studied in relation to other
molecules. General experiments such as sinusoidal, creep, or stress re-
laxation tests can be used. Several theories have been suggested as a result

of this experimental effort (4, 6).

The Conditions under which a Polymer will be Viscoelastic

The total deformation that occurs under a particular load, oy can be
broken up into the sum of the deformations which are a result of different

phenomena (4).
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where €1 is the elastic (time-independent) strain; €5 is the viscoelastic (time-
dependent) strain; €3 is the viscous strain, olt/p, where p is the viscosity
and t is time. At room temperature p is extremely large and €, can be con-
sidered negligible, therefore one has primarily €5 If the temperature in-
creases and the polymer is amorphous, then the viscous effect will begin to
become the dominant term; or if the polymer is crosslinked, then p will still
be very large. If the temperature is lowered €5 becomes smaller and £ be -
comes more significant. Crystallites or bulky side groups assist in retard-

ing flow (7).

Viscoelastic Deformation and the Shift Function

In the previous section the effect of temperature has been considered.
The objective is to mathematically correlate time, temperature, stress, and
strain. The particular correlation for linear materials is referred to as the
time-temperature superposition principle and makes use of a shift function.
The shift function relates time and temperature. A material sees elastic and
viscoelastic deformation ¢, + sz(t)g as shown in Fig. 2.

By shifting such a curve with respect to the time axis, the effect at an-
other temperature can be obtained. The shift function can include both verti-
cal and horizontal shifts. If a shift function is applicable to a linear visco-
elastic material, then the polymer is referred to as a thermorheologically
simple (5) material. This is important not only in characterizing a material,

but for analysis (8). For polymethyl methacrylate (Lucite),

$(T) = 107°% exp {_(1-9—%% (110-T) [T 40 + 0.0365(T - 80)2]} (4)

10

where T is in degrees centigrade, and ¢(T) is the shift function. The temper-

ature range where this is valid is 80-110°C.
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It should be noted that linear viscoelastic deformation is recoverable,
provided sufficient time has been allowed for the polymer to relax. Non-
linear viscoelastic recoverable deformation is discussed later. If the load
is removed, one instantly obtains the elastic deformation, and after sufficient
time the viscoelastic deformation reaches an asymptotic value. The differ-
ence between this value and zero is the permanent deformation €5 Further-
more, € and ¢ can be tensile, compressive, or shear strains and stresses,

and the material properties needed (e.g., p) are to be consistent.

Superposition Principle, Strain Hardening, Time Hardening, and Mechanical

Equations of State (9)

~

It is the ability to predict the resultant strain from a known load, or
vice versa, that is the objective of analysis. The four theories mentioned
above are attempts at this.

The Boltzmann superposgition principle states that the stresses and their
resultant strains are additive. This is actually the linearity concept as shown
in Fig. 1.

If sl(t) is a result of oy and Ez(t}) is a result of 0y then el(t) + sz(t) is
a result of o, + 0, The relationship is reversed for stress relaxation, and
Gl(t) + O‘Z(t) is the result of e e,

The strain hardening and time hardening theories are illustrated by Fig.
3. A creep test is performed at a stress level 0y (test 1), and another creep

test is performed at a higher stress level, o, (test 2). At time ty the stress

2
level of test 1 is increased to 0y- If the strain hardening theory is applicable,
the test 1 curve to the right of ty will parallel the test 2 curve to the right of
point A; if the time hardening theory is applicable, the test 1 curve to the

right of t, will parallel the test 2 curve to the right of point B.

1
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The mechanical eéuation of state indicates that the stress is a function
of both strain rate and temperature. It assumes that the material does not
change in getting to a particular stress state nor does the direction taken in
any stress space in arriving at a given point yield different results. It should
be ‘noted that amorphous polymers do not have a well-defined structure, so
that the mechanical equation of state may be applicable.

An investigation by Findley and Khosla (LO) on four unfilled thermo-
plastics indicated that the mechanical equation of state is applicable when the
stress is constant or increasing, and the superposition principle predicted
results closer than the strain hardening theory which in turn predicted closer
results than the time hardening theory (36% off). It should be noted that the
maximum deformation never exceeded 4% in this investigation.

The principal objective of our work is to relate the mechanical proper-
ties of plastics to engineering design problems. Of course, the chemistry
portion of the problem cé.nnot be ignored. Consequently we will note molecu-
lar structure (e.g., molecular weight, monomer content) but leave the study

of molecular motion to rheologists who have a greater chemistry background.

MATHEMATICAL RELATIONSHIPS

Even simple problems in viscoelasticity require difficult mathematics,
and therefore a viscoelastic solution has not been attempted by most engineers.
In addition, limitations on solvable problems have made many engineers feel
that these solutions are too unrealistic. However, the present effort in re-
search is devoted to elimination of as many as possible of these restrictions.
Final mathematical relationships should be comparable to elastic solutions
given in Roark (11) and therefore be easily usable by the working engineer.

No matter how anyone may look at this problem, a viscoelastic solution,

where obtainable, is much superior to an elastic solution when viscoelastic




-9- UCRL-7255

materials are employed. The elastic solution may have meaning at t = 0 and
at temperatures below room temperature, where the elastic modulus is inde-
pendent of time. The limiting stress, the soi—ca,lled yield strength, has no
meaning when applied to polymers at any temperature above the glass temper-
ature. This then brings up the criterion of failure, which for polymers ap-
pears to be arbitrary and can be set by the designers. Functional tests of
whole components are a means of checking an analysis for a particular prob-
lem, but they are highly expensive.

It was pointed out in the last section that the Boltzmann superposition

principle is a reasonably good approximation for linear viscoelasticity. That

N N
is, z o, correlates with z ei(t)e The question that of course arises is how
i=1 i=1
can g be related to al(t) in an equation? If this can be determined then o,
can be related to si(t). Note that the process is revefsible: e, can be corre-
lated to o*i(t),

The approach taken is to use models consisting of springs and dashpots,
the spring representing the elastic response, and the dashpot representing the
viscous effect. Typical models are those of Kelvin, Maxwell, and Burger
(4, 12, 13, 14). The plan of this section is to solve a typical problem, with

notes and references on how the solution could be extended to other problems

(15).

~~

Statement of Problem

A constant force P is applied to a rod of length £ and area a for a period
t,» at room temperature, Tr” If the deflection 6§ in the direction P is kept
below 613 what is the maximum force P that can be applied and which is the
best material? Humidity will be assumed not to be a problem and El/f =€

is of the order of a few percent.
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One solution of course can be to take many rods and subject them to
tensile creep tests. If the temperature in the problem changed to a value
other than T., or the geometry changed, an infinite number of tests would
have to be run.

The elastic solution would be

g P/a-s (5)

8/1

where E is the modulus of elasticity. The fact that we are dealing with an

£e=o0/E (6)

€] of the order of a few percent makes the theory of linear viscoelasticity ap-

plicable. After final selection of a material, tests should be included that
will check this assumption.
From the problem it is evident that P is independent of time, and since

a viscoelastic material is selected € will be a function of time, ¢(t). There-

fore

g = e(tl) = 6(tl)/£ (7)

where § =& The material property E is the relation between o and €. This

1°
relation can be described by models as discussed earlier.

The Kelvin model (see Fig. 4} will be used in this problem. For most
materials, the simple models wiil not describe the material adequately.
Therefore more complex models, like a generalized Kelvin model, may be
used when more accurate descriptions are required. The abundant computer

facilities at LRL permit handling such complexities.

The stress in the spring (Fig. 4} is K and the stress in the dashpot is

de

K, gz- From equilibrium,
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c=0,+0, (8)
de d
=Kls+K2a—t= 1€+K23T(8) (9)
=E[K F K d} (10)
1 2dt) -
3=E(t)=[K + K -‘}-J (11)
€ 1 2dt|’

where E(t) is a time-dependent modulus.

(6)

9

==

B:E
a

the elasticity solution. Now replacing E by E(t) and & by &§(t), note that P is

independent of t.

5(t) = gf"m (12)
Py 1
= == (13)
a d
Kl + K2 I
d Ps
dé(t) _Pef 1
K16(t) + K2 I - T(_K_g) (14)

Equation (14) is a linear differential equation. If the material was nonlinear

Eq. (14) would not be linear. Now we solve (14).

K
as(t) =1 _ P
Tt 'K, 6(t) =

K
) 1 1 P2
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From the initial condition of the problem t = 0, &(t) = §(0) = O.

P4
Ci=-3r (16)
1
K ;
Y. 1 1 Pt
8(t) = - g, P ( K;t) b oira

K
1 [Py 1
—-—Kl(—_a ) 1l - exp (-— ——-Kzt):l, (17)

Since 6(t1) = 61
K
1 P4 1
then 61 e 1 - exp (- -K—tl) . (18)
1 2
Solving for P, we get
8K 2 1

P=—7 K
1-exp |-t
Kzl

From Eq. (19) it is seen that the only unknown is P; Kl’ K.2 are constants de-

termined for a particular material. In this case, it would be best to run ten-

sile creep curves for times of the order of ts. The constants K, and KZ

should be independent of stress since they are material properties.
Determining Kl and K2 may be done as follows.

o _ d
E’K1+KZETE° (11)

From a tensile creep test in the linear range, of order 00ty Tr’

ol

r:+Ki(‘i or

|

e 1 |
o = K t'!"—K—ZE:R—ﬂ (20)

[oN)
[s¥]
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Equation (20) is a linear differential equation.

K Ty
€=Cexp -R_t +—K-"—. (21)
2 ' 1

The boundary conditions t =0, e = 0, ¢ = Ty (see Fig. 5) give

! !
0 = C + “K‘—g or C = - ’K—-n (22‘)
1 1
o K o o K
1 1 19 1.\
E = - K—- exp - -R—t +-I—<_ = —K— 1- eXp | - -R__t = E(t),
1 2 1 1 2 (23)

The data will determine explicit values of € and t from 0 to tl’ e.g.» £gs to.

o K
£, = 1 1 lt
0 K, |~ "~ &P "K,0

0'1 is a test condition and is known. Therefore K1 and K2 can be determined

—

from any two pairs of values of £, t. A material whose values for Kl and K,
give the greatest value for P in Eq. (19) is the optimum material.
There is another approach one can take to the solution of such problems

(16, 17).

& = mt™, ‘ (24)

Equation (24) appears to describe many rigid polymers well; m, n are con-
stants, m being a function of stress (¢), n being independent of stress. A
creep test on different materials could determine a series of values for n, then

for each value

B(tl n
€, = z—:(tl) = —g— = mt,;". (25)
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The value m(O'l) can be obtained. Hence unique values of m(al), n, are ob-
tained for each material. Knowing the value of m(ol) experimentally (when
n was obtained), one can run a test at a different stress level until m, is
reached. The stress o, is the maximum load for a particular material. Of
the materials tested, the one having the largest oy would be selected as o?ti~
mum. A check should be made at the end to see that n is independent of
stress.

The problem used as an example is in itself a creep test. This is felt
most when the validity of ¢ = mt" is questioned. In this particular problem,

the ordinary creep test can determine the validity of the assumptions. It is

when multiaxial stress problems arise, and this equation is extended, that

12).

fa—y

there are no longer inexpensive and fast checks of the assumptions (7,18,

Extensions of the Problem

In working with the Kelvin model, the following relationship was deter-

mined

o _ d |,
‘E— - [Kl + KZ a’t}y (11)

z% represents an operation to be performed on a function that varies with t.
As an example D%Z + 2} = 2x means that D = d/dx is a differential operation
on the function f(x) = x2 + 2, and f'(x) = 2x. D is therefore called an operator.

P = d/dt is an operator. When more complex models are used the relation

above becomes more involved.

®lq

B d _ P

n n-1
K -——-d + K d + ... + K
n+l ,,n n ,.n-l 1
_ dt dt
B n n-1 (26)
d d
RpiTmtRasmr v PRy
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N
where k = 0,...,n are the material parameters de-

where Kk+1 and Rk

+1’

termined from experiment.
The most simple type of element where ¢/¢ = P/Q is the Burger model

(Fig. 6)9 with

2
d d
K3 —?dt + K2 I

= ) . (27)

d d
R3;’Z+thﬁ+ Rl

o
€

Provided the system is linear, an approximate representation of the material
is possible.
This means that for a generalized Kelvin model. (several simple Kelvin

models in series),

o0 T 9 -t/7] ogt
€=T+z -K— 1-e +_t_ (28)

0 i P
o,t
where _— is the viscous term, TS is the ratio of spring constant to dashpot
p o
constant, and is known as the retardation time, —K—l is the initial elastic strain.
0

The inverse of the modulus is the compliance (Yi = I/Ki),
e —t/‘?“i
s(t)=o‘lei l1-e .

i=1

Because of the nature of the molecular chain, a continuous function is more

nearly correct.

0 —t/’T’
et) = o) S; Y (1) (1 - e ) dr (29)

where 7 is a dummy variable.
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Equation (29) represents the integral form of ¢ (’c)/o“1 = Q/P. The integral
form is equivalent to the operator form Q/P, provided the times under con-
sideration are short. Q/P is not equivalent to the integral form at the upper
limit, «, of the integral form. Egquation (29), in order to be evaluated, may
be transformed to eliminate the integral sign. The Laplace transform is

ideally suited for such problems. Recently, Lee and Rogers (20) indicated

how numerical integration can be used to solve the integral equations. Using
such mathematical techniques, one can go from the integral form to operator
form and back again to the integral form.

The other approach, which we will call the empirical approach, is the
determination of the best value of (m,n) in Eq. (24) by curve fitting.

The mathematical approach when the problem is nonlinear has only re-
cently been defined. Some nonlinear work has been done from the standpoint
of creep of metals at elevated temperatures (21). While creep in both poly-
mers and metals involves time dependence, the phenomena are different, and
assumptions involving polymers generally do not correlate with assumptions
involving metals. People are working on the nonlinear mathematical approach
and a solution is believed possible (22). The empirical approach has the ad-
vantage that a solution is readily available by performing a uniaxial test in the
nonlinear range, and obtaining the best fit for m and n in Eq. {24). The non-
linear mathematical approach, as far as it has been developed (22), is a most
complex subject.

If the problem was extended to include temperature or long time peri-
ods, the time-temperature superposition principle could be used.

If the material is linear throughout a temperature region, one could ob-
tain a shift function, which would translate E(t}). For example, if one were to

perform a creep test at an elevated temperature (above room temperature)
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for a short period of time and determine E(t), it would have the same value as
an E(t) determined at room temperature at the end of a considerably longer
period of time. This shift function can be used in analysis. Furthermore,
while it is of course best to run the longer period test at room temperature,
one may not have the time or the facilities to run such extended tests. There-
fore this extension provides a means whereby useful data can be accumulated
in a short time.

In the empirical approach, m and n are probably both functions of tem-
perature.

Most practical applications invcolve stresses in more than one direction.
The elasticity relationship between stress and strain is given by Hooke's gen-

eralized law.

1w

SITECE (crz +cr3)° g (30)
Permutation of the subscripts 1, 2, 3 will give the strains in the other direc-
tions. From the generalized relationship, it is seen that two material prop-
erties, p and E, are needed. When this relationship is extended to linear
viscoelasticity, again two relationships are needed. Instead of u(t), the shear
modulus G(t) is used. Note that 1/G(t) = J{t), the shear compliance. For a
linear viscoelastic isotropic material showing neither instantaneous elastic
deformation nor viscous deformation, the general integral relationship between

stress and strain corresponding to Eq. (30) above is (23)

/

N
t b,
eij (t) = z S {( - e-?\ (t'T)) [ub doij(T)-ﬁb 6ij dcrkk(f'rﬂ ; (31)
b=1"""

i,j =1, 2, 3, 7is a dummy variable.
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For the operator form,

74 11
S1°E - (7?? ‘if) (“2 * ”3)’
7 1 1
sl(t) = Q) ’(ZG(f) - E(ﬂ) (0'2 + 0'3). (32)

In Eq. (32), o is not a function of time; in the integral form ¢ is given as a
function of time (r), representing the most general case. (Equation (32) can
be extended by substituting oy = Ul(t), o, = O'Z(t), o3 = 3(t),)

If one were dealing only with the theoretical aspect of linear viscoelas-
ticity, Eq. (31) would be satisfactory. However, in solving real problems it
is necessary to use actual material properties. Therefore, let us reduce

this general form to one more appropriate. Let i=j=1

Eij =€y = eX(t)°

That is, let us determine the normal strain in the x direction, eX(t), in terms

of all the stresses, Oy e o, # 0. We use tensor notations:

Ok = 911 + 055 + O33 = Opy + UYY to,, - (33)

5. = lfori=j,
Yoo for i # .

N
t b ;
gx(t) = z Sm{(l _ e—?x-(t-'rﬁ l:ab dax('r)'ﬁb (dox(7)4-day(7)+daz(7ﬂ}
b=1

(34)
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By definition

b=1
where
0 for t =0,
H{t') =
1 for t>0.
For the elastic case,
8 = po_ 1 1
"E "2GTE

Changing to a time-dependent modulus,

N b
1 1 b APy :
2GTEN) T ERE E P { "€ }H(”“

b=1

Letting t' =t - 7, we get

e (t) = S t[ ! - 1 ]
- Tﬂt—?_  JE(&-7) 7 2Glt-T)

[dax(*r)) +do, (r) + dO‘Z(T)J. (35)

In terms of the compliance rather than moduli,

¢ t
&:X(t)=S E_(_EZ:_T_)dUX(T)JrS' [( )~-—Jt- J[do - .,.+doz('r):|. (36)

- OO - 00

Therefore it is seen that if G{t) and E(t) are known through creep or relaxation
experiments in shear and uniaxial tension, respectively, the entire stress-

strain relation is given by {36) for linear strains in the x direction.
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In terms of all the stresses as a function of all the strains,

t

t 2
O‘X(t) Z‘Stbo G(t-7) dsX(T) +S:w[E(t -T) - -3—G(t - 'Tﬂ I:dax('r)+dey(7')+dez(7')].

(37)

The preceding relationships are valid for linear viscoelasticity. Only
recently has the problem been defined mathematically for nonlinear viscoelas-
ticity. However, it appears that it will take many years for the solution.

Onaran and Findley (18) have suggested an equation which would be used

in the linear as well as the nonlinear region.

N
€ij(t) = Sij{z [so' Fl(okk) - eo” FZ(Ukk)+ m'(t - ga)n F3 (O‘kk)
a=0

-p'(t- e, ) Fy (Ukk)] ¥ Z [60' FZ(GiJ')
+p' ( - §a)q F4(Uij)] ’ (38)

where Fl(o), FZ(O'), F3(0'), F4(or) are nonlinear stress functions; so', m', n,
eO' p's q are experimental constants. For uniaxial tensile creep, Eq. (38)

reduces to an equation similar to Eq. (24).

A question that is as yet unanswered is how valid is Eq. (38)?

Use of the Laplace Transform and Correspondence Principle

There are two items that should be included in this section to make the
report complete: the Laplace transform and the correspondence principle
(24, 25).

If Y(t) is a continuous function2 of t, then

2Wii:h a slight modification, the theory here can be extended to sectionally

(piecewise) continuous functions.
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y(s) = § e St vty at 2L v t), (39)
0
Lol ygis) = Yin), (40)

where iis the one-sided Laplace transform of the function Y (t), and ;C—l is
the inverse one-sided Laplace transform of the function y(s). For derivatives

of Y(t), the Laplace transform is

Lx®ey = sPys) - ¥ v (o) - sy (0) - P Y0) L (41)

for example, when Y(n)(t) =Y"(t), ‘then from Eq.(41),

KY”(t)

s%y(s) - sY(0) - Y'(0)

s2Y (t) - sY(0) - Y'(0).

It can be seen that with the aid of Eq. (41) many differential equations can be
easily solved.

In addition to the continuity of Y (t), the theory of Laplace transforms is
based also on the concept that Y (t) does not grow faster thaﬁ Me®t as t goes
to infinity, where M and a are constants. This is referred to as the exponen-
tial order of the function Y (t).

An important aid in solving viscoelastic problems makes use of the con-
volution theorems. The convolution of two functions Y (t} and G(t) is defined

as
t
Y (t)*G(t) =§ Y{r)G(t - 7) d7. (42)

if y(s) and g(s) are the Laplace transforms of Y(t) and G{t), respectively,

then
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0

‘ - ¢
y(s)g(s) :I{Y(‘c)*c}(t) = SO e_StS Y (r)G(t - 7) dT dt. (43)

In the solution of elastic stress analysis problems where the material proper-
ties are not in simple form ((‘En))y the Laplace transform may be applied to the
differential equation of the viscoelastic case, thus removing the time variable
and leaving an elastic solution. Using the inverse Laplace transform. one can
obtain the viscoelastic solution. The Lapla.ce transform need not necessarily
be applied to the differential equation. If an elastic solution exists to an equiv-
alent elastic problem, the inverse Laplace transform can be applied almost
directly (25). Care must be taken that the spatial distribution in both the visco-
elastic problem and the corresponding elastic problem is maintained. This
"correspondence' between viscoelastic problems and elastic problems is very

important.

EXPERIMENTAL ASPECTS
The most common experiments on viscoelastic materials are as follows:
1. Creep
A, Uniaxial tension or compression
B. Torsion
2. Stress relaxation
A. Uniaxial tension and compression
B. Torsion
3. Constant crosshead velocity for different velocities
A. Uniaxial tension or compression
B. Torsion (constant rate of twisting)
4. Sinusoidal tests where either stress or strain is the independ-

ent variable



~23- UCRL-7255

5., Birefringence tests
All the above can be performed at different temperature and humidity. For
an ideal isotropic, linear viscoelastic material, creep, stress relaxation,
and constant crosshead velocity yield equivalent information. Knowing the
behavior under one situation, the behavior under the other situation can be
determined (26, 27).

Creep and stress relaxation experiments cannot be performed for times
less than about 1 minute. To obtain data for shorter times, sinusoidal experi-
ments can be utilized. This has a further advantage in that additional decades
of time can be obtained. First it should be pointed out that one can use a uni-
versal testing machine if one has relatively low capacity load cells and good
frequency control. More applicable and less expensive equipment is commer-
cially available for this purpose (28,29). It is similar to a fatigue tester.
(See also ref. {30) for production stress relaxation tests.) The time range

1 4

for such sinusoidal tests is 10” ~ to 10™ ~ sec (10 <w < 104); it can be extended

to cover 103 to 10_8 sec. Both the sinusoidal technique and the creep or stress
relaxation technique can overlap in their time scales.

In a sinusoidal test, the stress or strain at a particular frequency is the
independent variable and the object is to observe the dependent variable. Be-
tween the stress and strain there is a lag whose phase angle § is called the
loss angle and is a function only of the frequency w. The ratio of the maxi-
mum stress to the maximum strain is also a function of w only. The strain
(or stress) can be broken up into two parts, one in phase with the other vari-
able, the other 90° out of phase. Therefore, one can construct moduli which
are complex, sometimes referred to 2s dynamic moduli.

The birefringence technique mav be used in conjunction with the sinusoi-

dal creep, or stress relaxation experiments to measure the orientation of the
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polymer chains. A serious handicap of this technique is that only a few ma-
terials have the necessary birefringence properties.

It should be noted again that all of these experiments can be done at ele-
vated temperature, and the time and temperature superposition principle uti-
lized.

Many of the techniques referred to are being utilized at LRL. Robert
Jackson (31) is running uniaxial cbmpres sion creep experiments in which a
dead weight is placed on a foam plastic and the axial deformation is measured
as a function of time. This is done at several temperatures (Applied Mechan-
ics Laboratory). Stress relaxation experiments have been performed on poly':
ethylene at LRL using an Instron universal testing machine where a constant
tensile deformation was applied and the stress measured as a function of time
(32).

At Site 300, the Weapons Division has performed many axial compres-

sion creep tests on live high explosives.

THE COMBINED STRESS VISCOELASTIC PROJECT AT LRL

The objectives of the research effort in the Support Division are as fol-

lows:

1. To experimentally verify the stress-strain {constitutive) relation-
ships for linear viscoelasticity as a function of stress state, temperature,

and humidity.

2. To experimentally verify available or new equations that will take
account of nonlinearity in stress and strain at different stress states, tem-

peratures, and humidities.

3. To determine whether the arbitrary criterion of failure used on met-

als at elevated temperature (33) is applicable to plastics.

Much of the experimental equipment for biaxial creep tests at LRL was

designed by Findley and Gjelsvik and reported in ref. (19). Further
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elaboration of this and additional equipment to be used on this project will be
described in a succeeding UCRL report.

The approach taken toward objectives 1 through 3 is to apply biaxial
stresses to thin‘-walled tubular specimens. If an internal pressure is applied
to such a specimen, the radial stress is negligible compared with the hoop
stress. If in addition an axial tensile or compressive strength is appliedi., a
biaxial state of stress is produced. An internal pressure without any -addition
of an axial force generates a biaxial stress due to the effect of the pressure
in the axial direction. It is extremely important that the wall thickness be

uniform so that the tangential stress will not vary around the circumference.

Test Procedure

The approach described above permits producing any stress combina-

tion to the right of the 0y axis. (Fig. 7). If the material is assumed isotropic

and homogeneous, the isotropic lines aa' and aa' can be added. While no such
yield surface exists for such materials, it will be the objective then to reach
s 0_ and observe the deformation (axial and tangential) with

91 =)
respect to time. This is to be done until the entire stress space is covered.

a particular ¢

Checks outside of § will determine the validity of isotropy. The paths to take

to reach Op.» O, will be radial in these experiments and will be traversed
1 1

at a linear rate (see Fig. 8), with Pi(t)/PZ(t) = K for all tests. For one par-

ticular point, the effect of changing K to reach o o, » a8 well as the path

6 7,
taken, will be investigated.

Thinzwalled tubular specimens will be subjected to both torsional (shear)
and tangential stresses, and the shear, axial, and tangential strains will be
observed as a function of time. All of this is to be done as a function of both

temperature and humidity. It is anticipated that under each radial path in Fig.

7, five points will be investigated over the linear and nonlinear region.
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Small differences in temperature and humidity have much influence on
the mechanical properties of polymers. Figure 9 indicates the effect of rela-
tive humidity on tensile strength for polymethyl methacrylate (PMMA) (13).

McLoughlin and Tobolsky (34) have also shown the effects of humidity on
PMMA as shown in Fig. 10.

Because of the influence of temperature and humidity, a special (applied
mechanics) laboratory was built at LRL with temperature controlled to 73.4
%+ 1°F at a relative humidity of 50 £ 1%.

The material selected for this investigation, polymethyl methacrylate
(PMMA), is scld under the trade names Lucite and Plexiglas. The reasons
PMMA was selected are as follows:

1. Much information is already available on PMMA.

2. It is linear over a usable range of stress and strain, but under large

enough strains it is nonlinear.

3. Designers are using linear viscoelastic thecory, including the time-

temperature superposition principle.

4., PMMA is compatible with aluminum. Aluminum particles (Reynolds

400 XF) averaging 7 microns and varying from dust to 25 microns
are to be mixed with PMMA (50% by weight). This material is to be
investigated as thoroughly as plain PMMA. The objective here is to
determine the effect on the constitutive equations of a time-independ-
ent material embedded in a timeadgpendent material such as high ex-
plosives.

The molecular structure of PMMA is shown in Fig. 11. The glass tem-
perature of PMMA, Tg’ is 378°K. If the temperature is below Tg’ the creep
phenomenon does not depend significantly on molecular weight provided that the

molecular weight is above some particular value. This minimum value of
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molecular weight for PMMA is not known. Authorities agreed, however, that
the higher the molecular weight the better the creep behavior. Nielsen (35)
has stated ZC = 208 = ZMC/MO’ where Mc is the critical molecular weight and
MO is the molecular weight of the monomer unit. The repeating unit in a
polymer is known as a monomer (see Fig. 12). A linear polymer is made
up of adding many monomers in a chain. The monomer content of a polymer
is the number of monomers tha;t are not tied into the chain. Therefore for
good creep resistance it is desirable to have a polymer with a low monomer
content.

All specimens are being made from the same batch of PMMA. The
monomer content and the number average/weight average molecular weight
distribution will be reported. The material is being prepared by Monsanto
Chemical Co., in Dayton, Ohio.

Tobolsky (1, 36) has investigated the effect of annealing PMMA (Fig. 13).
This gives us an idea of the effect of crazing, in which small microcracks
suddenly appear in the material. It is not known how or why they occur. In

view of Fig. 13 a cooling rate of 5°C/hour from 120°C is to be utilized prior

to testing.

Review of Some of the Literature Available on PMMA

Figure 14. shows stress relaxation versus time (34,37). The stress at
a particular time t is divided by the initial constant strain and the ratio plotted
against time. The time-temperature superposition principle is valid for PMMA
so in Fig. 14 Tobolsky has divided the curve into several distinct parts as fol-
lows (where ¢ is constant and a few percent in magnitude):
Region A. Time effects not pronounced. Not sensitive to molecular weight.

Dependent on annealing rate.
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Region B. Linear viscoelastic region. Sensitive to time and temperature.
Not sensitive to molecular weight above critical molecular weight.

Region C. Transition region to rubbery flow.

Region D. Rubbery flow.

As shown in Fig. 14, the primary linear viscoelastic area is between 95 and

113°C. While military requirements are -65 to +165°F, to observe the linear

viscoelasticity phenomenon one should go to 234°F (112°C). This linear visco-

elastic region is seen again in Nielsen's work (35) on PMMA using sinusoidal

techniques (Fig. 15).

On the basis of the work of Marin and Pao (38) and Staverman and
Schwarzl (5), linearity in PMMA occurs at room temperature below 1420 psi
= 108 dynes/cm2 stress or 0,01 in./in. strain.

At room temperature, quite nonlinear and very time dependent results
are obtained for PMMA. Not only is almost all of the strain nonlinear, but
it appears to be nonrecoverable (see Figs. 16 and 17). This is often referred
to as the plasticity effect in polymers.

Sherby and Dorn (39) in 1957 showed that PMMA for large values of
strain (200%) in the temperature region -10°C = T = 140°C is entirely anelastic
(completely recoverable) when the load is removed and the specimen is sub-
jected to further increase in temperature. Without further increase in tem-
perature, permanent strain can exist as was observed by Marin and Pao (38)
at room temperature (Fig. 17); it appears that if time went to infinity the rnav-
terial would not recover. Permanent strain can exist in nonlinear deformation
at any temperature, in addition to the viscous effect (£3) associated with linear
viscoelasticity. At room temperature there is no viscosity effect in the linear

region due to linear viscoelasticity.
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The effect on tensile strength as a function of crosshead speed is given

by Bartoe and reported by Dietz et al.(40) for PMMA. Data on other features

of the behavior of PMMA are reported by Knowles and Dietz (41). Thermal

expansion for PMMA is given by Sherby and Dorn in ref. (39).

SUMMARY

It has been shown that for viscoelastic materials the interrelationship
between stress, strain, time, and temperature makes stress analysis more
difficult than for elastic materials. Several approaches to linear viscoelastic
stress analysis have been discussed. These are:

1. Solving the differential equation for the appropriate model.

2. Using the appropriate empirical constants.

3. Relating time to temperature.

4. Transforming viscoelastic analysis into equivalent elastic analysis

with the Laplace transform.
All of the methods require experimentally determined constants and a fairly
sophisticated mathematical treatment.

It has been shown that little theory exists and essentially no experimental
work has been done in the nonlinear region of viscoelasticity., The same status
of limited theory and virtually no experimental work exists in the area of’ multi-
axial viscoelastic stress fields. The experimental projects at LRL are upder-
taken to contribute in the areas mentioned above, i.e.,

1. Criteria for failure for viscoelastic analysis.

2. Experimental data to verify existing theories or to guide development

of a new theory that will include nonlinear viscoelastic stress fields

as a function of temperature and humidity.
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Fig. 1. In viscoelastic material, constant (time- 1ndependent) load (a)
produces time-dependent deformation (b).
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Fig. 2. Time-temperature relation for viscoelastic material.
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Fig. 3. Illustration of strain hardening and time hardening theories.
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Fig. 5. Typical creep curve.
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Fig. 6. Burger model, for o/e = P/Q.
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Fig. 7. Two-dimensional stress space.
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Fig. 8. Internal pressure and axial load control rate.
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Fig. 9. Effect of relative humidity on tensile strength of polymethyl methac-
rylate at 77°F. (Courtesy T. Alfrey, Jr., "Mechanical Behavior of High Poly-
mers,'" Vol. VI, Interscience Publishers, Inc., New York (1948), p. 524.)
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Fig. 12. Monomer unit for PMMA.
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Fig. 15. Dynamic mechanical properties of polymethyl methacrylate.
(Courtesy L. E. Nielsen, Soc. Plastics Engineers Journal, Vol. 1é, p.
525 (1960).)




UCRL.-7255 -46-

20——T—————71 T T T T
£ | -xSy=3700psi xSy=3255psi -
S IG/ $1:2900psi -
- 2695psi

St =2500psi

// St =2000psi

Sy =1605pst

\°°

x - Fracture

Creep strain, !
FN
1

Time, hours

Fig. 16. Tension creep-time relations for Lucite. (Courtesy J. Marin and
Y.. Pao, Transactions, Am. Soc. Mechanical Engineers, Vol. 73, p. 705 (1951).)
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Fig. 17. Tension creep recovery curves for Lucite. (Courtesy J. Marin
and Y. Pao, Transactions, Am. Soc. Mechanical Engineers, Vol. 74, p. 1231

(1952).)
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the information con-
tained in this report, or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or process dis-
closed in this report.

As used in the above, "person acting on behalf of the Commission "
includes any employee or contractor of the commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract with the Commis-
sion, or his employment with such contractor.




